
ELSEYIER 

JOURNAL OF 

GEOMETRYA~I 
PHYSICS 

Journal of Geometry and Physics 24 (1998) 291-302 

Elements of discrete differential calculus 
with applications to crystal physics 

Nicolae Cotfas ’ 
Department qf Mathematics, Faculty of Physics, Universiy of Bucharest, 

PO Bo.r 76-54, Bucharest 76, Romanicl 

Received 20 November 1996 

Abstract 

Some elements of discrete differential calculus with possible applications to the description of 
the physical phenomena occurring in crystals having two atoms per unit cell are developed in a 
natural way by using a convenient mathematical model for these crystals. 
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0. Introduction 

The description of physical phenomena based on the notion of real number and passage 
to the limit takes into consideration unphysical details (for example, one uses the properties 
of functions depending on the difference of values of a function taken at points situated at 
lO-‘oun m distance) and ignores the discrete structure of matter. The possibilities of these 
mathematical objects in matter modelling are based on their formal properties, and attempts 
exist [l-8] to replace them by using mathematical objects having similar properties defined 
by using discrete spaces. 

This method becomes adequate when the discrete spaces we use can be associated in a 
natural way with physical system. 

The space of equilibrium positions of atoms in a crystal is a naturally defined discrete 
space, and we think that it offers a possibility to develop discrete differential calculus useful 
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in the description of physical properties of crystals. In particular, the existing variants [6,8] 
of discrete differential calculus on Z3 may be useful in the description of the physical 
phenomena occurring in crystals having one atom per unit cell. 

In this article we develop some elements of discrete differential calculus applicable to 
crystals having two atoms per unit cell. 

1. A mathematical model for crystals having two atoms per unit cell 

Let &3 be the set of all the points of the physical space identified by using the bijection 

&3 --f E3 : PHOP 

with the Euclidean space lE3 = (OP( P E E3) of all the vectors having as origin a fixed point 
0 E &3. 

Let eu, et, e2, e3 E E3 be four non-coplanar vectors. Using the vectors eu, et, e2, e3 
and the vectors Eu = -eu, Gl = -et, G2 = -e2, iZ3 = -e3 we will generate a discrete 
set M which can be used as a model for crystals having two atoms per unit cell. The 
point 0 belongs to M. Starting from the point 0 considered as initial point we construct 
the representatives OAu, OAl, OA2,OA3 of the vectors en, et, e2, e3. The terminal points 
of these segments Ao, AI, AZ, A3 belong to M, and by choosing each of them as initial 
point we construct representatives of the vectors i?u, Cl, G2, E3. The terminal points of the 
last constructed segments belong to M, and by choosing each of them as initial point we 
construct representatives of the vectors eu, er , e2, e3, and so on (we construct alternatively 
representatives of en, el , e2, e3 and representatives of Go, et, E2, ii3 by choosing as initial 
point each of the last obtained points). Each point P belonging to the set M thus obtained 
can be described by using a sequence 

- - / ei,ei,ei,ei, . .eik, (1) 

where it, i2. . . . , ik E (0, 1, 2, 31, ei, = eik for k odd, e;, = Zia for k even, and 

OP = ei, + Gj, + eis + Gi4 + . . . + ei,. 

Denoting WI = et - eu, w2 = e2 - eo, w3 = e3 - eo, one can see that 

M=MoUMl, 

(2) 

where 

are two Bravais lattices. When eu is contained in the interior of the parallelepiped determined 
by WI, ~2, ~3, the set M can be regarded as a model for a crystal having two atoms per unit 
cell. Particularly, in the case when AoA 1 A2A3 is a regular tetrahedron having the point 0 as 
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centre, we obtain a model for diamond type crystals (silicon, germanium, carbon-diamond. 
etc.) and zincblende type crystals [9-l 11. 

Let E(3) = O(3) x R3 = ((A(v) 1 A E O(3), v E R3} be the group of all the isometries 

(Alv}:iE3 - lE3:w* Aw+v (3) 

of the space [Ej, 

E:E3 - E3, EV = v, i:E3 --+ E3, iv = -v 

and let 

G = ]i: E E(3) l&W = Ml 
be the symmetry group of M. One can remark that (ilen} E G, and 

T = {(E~w) (w E MO] c G 

is the subgroup of G containing all the translations which leave M invariant. Let CA be the 
group of all the permutations CJ : (0, 1,2,3) -+ (0, 1,2, 31, and let 

Go = 1-4 E O(3) I ACiAo, AI, A27 A311 = (Ao, AI, AZ, A3)). 

Evidently, for each A E Go there exists on E & such that A(Ai) = A,,,(i) for any 
j E {O. 1.2.31. The group G can be described in terms of T 

G = U To (AlO) U U To [i o Aleo}. (4) 
A%> AEGo 

Let 

MI= {n = (no,n1,n2,n3) EZ4/no+n~ fn2tn3 E (0; 1)). (5) 

By associating to each sequence ei, @izei,iZi, . . . eik the element (no, nt , n2, n3) E M, where 
Yli is the number of appearances of ei inside it minus the number of appearances of ei, we 
obtain a mapping h : M -+ M. In the case 

(no, nl, n2, n3) E bQ 

noeo+nlel +we2+nje3=0 I 
===+ no=nl=n2=nj=O (6) 

the only considered sequel, h is a bijection and the numerical space M can be used as a 
mathematical model for the discrete space M. 

Two sequences (1) are said to be equivalent if one of them can be obtained from the other 
one by using operations such as 

- - . . .qejek.. -j. . . .ekejei.. 

(permutation of two neighbouring non-barred components), 

. . eiej& . . + . . . &ej& . . 
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(permutation of two neighbouring barred components), 

- - - . .f..ejejq.. . ---, . . .eiQ.. .or.. .iiieiejek.. --, . .@ek . 

(elimination of a sequence of the form i?jej or ejSj>, 

. . .ei&. . . ---, . . .eieiej&. . .or.. .@q . . . --, . . .&eiejek.. 

(insertion of a sequence of the form gjei or eii!j). This is an equivalence relation, and we 
can divide the space 3 of all sequences (1) into equivalence classes. One can remark that 
two sequences (1) describe the same point of M if and only if they are equivalent, and the 
set M can be identified with the set of all equivalence classes thus obtained 

M=3/-. 

The function 

6:MxMl---+N, 6(n, n’) = C Ini - n:l, (7) 
i=O 

is a G-invariant distance on RYU. The point n’ E M is said to be a S-neighbour of order k of 
the point n E k.4 if 6(n, n’) = k. Particularly, the points 

no = (no + x(n), ni. n2, n3), n’ = (no, no + x(n), n2, n3), 

n2 = bo,nt,n2 +x(n>,n3), n3 = (no, nl, n2,n3 +x(n)>, 
(8) 

where 

X(n) = (_l)no+nl+n2+4 

are the first S-neighbours of n = (no, nl, n2, n3), and 

,ik = (ni)k 

where j, k E (0, 1,2,3}, j # k, are the second b-neighbours of IZ. One can remark that 
njj=nforanyn~~,j~(O,1,2,3},and 

h(Mo) = In E by I x(n) = 11, I = {n E M) x(n) = -11. 

In the case of many crystals having two atoms per unit cell, the chemical bonds correspond 
to the pairs of atoms (n, n’) satisfying the condition 6(n, n’) = 1, and this justifies the 
importance of the distance 6. 

The description of M as set of equivalence classes of formal sequences M = 3/ - 
allows us to determine the number of Sneighbours of order k of a point n, that is, the 
cardinal 

Curd{ n’ 1 S(n, n’) = k}. 

Each element of 3/ -, that is, each class of equivalent sequences contains either a sequence 

- - - 
ei, ei,ei,ei4 . . . ei2j_, eizi 
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such that 

il I i3 5 ” ( i2j-1, i2 < i4 5 . < i2j. - 

{il. i3,..., i2j-1) n (i2, i4, . . . . i?j] = fl 

or a sequence 

_ _ 
ei,e;,eiqei4 . . ei2,eiz,+, 

such that 

iI 5 i3 5 . ” 5 i2j+l, i2 5 i4 5 5 i2j. 

{il,i3..... iz,i+l} n (i2, i4. . . , i2jJ = !A. 

Evidently, such a representative is unique, and it will be called the canonical representative. 
To determine Card(n’ 1 S(0, n’) = k) we use the following result: 

Lemma. Let j E N, and let al, a2, ag be three,formal symbols. 
(a) There exist exactly j + 1 sequences 

a;,a;,a;, a; I 

such that 

il.i2,..., ij E {1,2]. it si?<...Lij 

and j - I of them contain both al and a?. 
(b) There exist exactly $ (j + l)(j + 2) sequences 

ai,aj,ai, . .a;, 

such thut 

il. iz,..., ij E {1,X3), il ii25...5ij 

und i(j + I)( j + 2) - 3j of them contains all the three symbols. 

(a) The conditions are satisfied by the sequences 

a28282...82, alazaz...az, alalaz...a2, . . . alala . ..al. 

(b) For each 1 E (0, I, 2, . . . , j) there exist exactly j - I+ 1 sequences containing 1 times 
the symbol al. Evidently, there exist three sequences containing only one symbol, and 
3( j - 1) sequences containing two symbols. 0 

Theorem. For any n E Ml and k E N. 

Curd{ n’ \6(n, n’) = k ) = 
10j2+2 if k = 2j. 
10j2+10j+4 ifk=2j+l. 

(9) 
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Proo$ Evidently, 

Curd(n’ 1 S(n, n’) = k) = Curd{n’ ] 6(0, n’) = k), 

where 0 = (0, 0, 0,O) E Ml. In the case S (0, n’) = 2 j the canonical sequence describing the 
point n’ contains j barred symbols and j non-barred symbols. There exists 2( j + I)( j + 2) 
sequences having the non-barred positions occupied by the same symbol, 6( j - 1) (j + 1) 
sequences having the non-barred positions occupied by exactly two symbols, and there exist 
4[i(j + l)(j + 2) - 3 j] sequences having the non-barred positions occupied by exactly 
three symbolsThus, 

Curd{ n’ ) 6(0, n’) = 2j) 

= 2(j + l)(j + 2) + 6(j - l)(j + 1) + 4[i(j + l)(j + 2) - 3jl 

= lOj*+2. 

In a similar way, one obtains 

Curd(n’ I6(0, n’) = 2j + I} = 2(j + l)(j + 2) + 6j(j + 1) 

+4[$(j + 2)(j + 3) - 3(j + I)1 

=lOj*+lOj+4. 0 

Amappingc:(0,1,2,...,k) -+ M: j H cjissaidtobeapathonMif8(cj,cj+t) < 
1 forany j E [O, 1,2,... , k - 1). In the case co = Ck the path c is called a closed path. 
A path c such that S(cj, ci+t) = 1, for any j E (0, 1,2,. . . , k - I), will be called a 
non-singular path. 

Evidently, a non-singular path c : (0, 1,2, . . . , k) --+ M : j I-+ cj such that CO = 0 can 
be described by using a sequence 

ei,Z$,ei,&, . . eik E F’. 

We consider the set 

P= I (nf,n-> = (nof,n~,n~,n~,no,nl,n~,n~) E Iv 

~+&-E(O,l) 
j=O j=O I 

and the mapping 

52:F-+P, Q(ei,&ej,Q . . . ejk> = (n+, n-), 

where rr; is the number of appearances of ej , and n; is the number of appearances of ej 
in the considered formal sequence. 

For any (nf, n-) E P, the set D-‘( (n+. n->) c F contains 

N(n+ n_) = (c/?=on:>! (E;=oq)! 
l-g, q ! n,: ! 

(10) 
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formal sequences describing non-singular paths c : (0. 1,2. . . , 1) - FM : j H Cj satisfy- 
ing the conditions 

l&f+& 
j=O j=O 

co = 0, cr=n+-n-=(nof-no,n~-nl,n~-n,,n~_ni). ‘. 

In the case 1 -c k, starting from each non-singular path c : (0. I ~ 2. . , I] - M : j t-+ 
cj we obtain the singular paths 

c,]:{O,1,2 ,..., k}+M, c,(j) = C?](J) 

by using all the increasing surjections q : (0, 1,2, . . . , k} -+ (0. 1,2, . , I]. The number 
of these singular paths corresponds to the number of combinations with repetition of 1 + I 
things k - 1 at a time, and it is k!/[l!(k - I)!]. 

Thus, the number of paths (singular and non-singular) c : (0, 1. 2, . 
connecting the points 0 and n is given by the formula 

Nk(O, n) = c c 
k! 

l!(k - I)! 
N(n+. n-). 

13 (rt+.n-)EP,,/ 

where 

1 

3 3 

Pn,l= (n+,n)r[FD(n+-n_=n.Cnf+Cnj=l 

j=O j=O 

2. Elements of discrete differential calculus and applications 

. 1 k)-MI: j HCj 

(11) 

(12) 

Following certain ideas of the discrete differential calculus [l-8] and the analogy with 
the methods of differential geometry [ 121 we define some elements of a discrete differential 
calculus on the space Ml with possible applications to crystal physics. We will use the no- 
tations and terminology from differential geometry in order to indicate the correspondence 
with the continuous case. 

The definition of the tangent space of a differentiable manifold at a fixed point x as the 
space of vectors tangent to the curves passing through x suggests us to associate the space 

TIlM = {(n, n), (n, no), (n, n’). (n, n2), (n, n3)] 

to each point n E Ml. Let 3(M) be the algebra of all the functions f’ : Ml ---+ C. As in 
the case of differential geometry, we identify the elements (n, n), (n, no), (n, n’), (n, n*), 
(n, n”) called tangent vectors, respectively, with the operators 

o,, (a/axO),, (a/ax’),, (a/ax*),, (a/ax3),, : Fo4 - c, 

where 

0,f = 0, (a/axj>,.f = r,‘(f(n’) - .f(n)) (13) 
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and rj # 0 are real constants. For any f, g E .ZF(M), cr, p E @, one obtains 

(Wx%((Yf + Bg) = tWW?f + B(WAK (141 

but 

@/iQ),1(fgl = f(n9@/~Ag + (WAJ g(n). 

If F : M -+ M is a mapping such that 

S(F(n), F(d)) 5 6(fi, n’) 

(13 

for any n, n’ E Ml, then we can define the mappings 

F* : TM - TM, F*(n, n’) = (F(n), Fh’)), 

F* : X(M) - X(M) : X t+ F,X, (F*X)Fcn) = F, X,,, 

where 

TM= u T,M 
n&A 

and 

X(M)=(X:~-T~:~HX,(X,ET,~) 

is the space of all vector fields. Each vector field X E X(M) defines an application 

x : F(M) ----f J=(M) : f k+ Xf, (Xf)(n) = Xnf. (16) 

Thepathc: (0, I,2 ,..., k} -+ Ml is said to be a solution of the equation defined by the 
vector field X E X(M) if 

xCj = (Cj3 cj+l) 

foranyjE{0,1,2 ,..., k-1). 
Following the analogy with the differential geometry, we define the vector space 

T,*M = (cp : T,M - C 1 c&n, n) = 01, 

its canonical basis 

(d.& : T,M --+ @, ((dx’)nt (a/axk)n) = ajk 

and the space of 1 -forms 

~l(~)=(w:M-T*mlIl:n~~n~~,~T,*m/O}, 

where 

T*M = u T,“M. 
n&! 

(17) 
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The mapping 

F(M) x D’(M) + D’(M) : (f,W) H fw. (.f’wh = .f‘(nh, 

defines a structure of F(M)-module on D’ (M). 
Each 1 -form w E ‘27’ (Ml) can be written in the form 

3 
W= c Wj dx j. 

J=o 

where wj E F(M) are the functions 

coj :M - 62, wj(n) = (WI. (a/aXj)n), 

and it defines an application 

(18) 

w : X(M) - F’(M) : x H w(X), (w(X))(n) = @,I, X,,). (19) 

For any function f E F(M), the l-form 

df : M - T*M : n H (d .f‘),,, ((d .f),,. (?)/a~~),,) = (iWL~j),,.j (20) 

corresponds to the total differential of f. One can remark that df = 0 if and only if ,f is a 
constant function. 

The l-form w E D’(M) is said to be exact if there exists ,f E F’(M) such that w = df’. 
For o E D’ (M) and a path c : (0, 1,2, . . , k) --+ Ml, the number 

k-l s c W= t(cj,cj+l)~~,(cj,cj+l), 

c ;=o 
(21) 

where 

T : TM - 53, T(lZ, n) = 0, t(n, II’) = Tj, 

represents the integral of o along the path c. Particularly, for .f‘ E F(M) 

s df = .f(ck) - .fko) (22) 

and one can see that w E 27’ (Ml) is an exact form if and only if j, w = 0, for any closed 
path c. Indeed, in this case we can fix a point n E M, a constant K E C, and we can consider 
the function 

K for n’ = n, 

f :M-cc, fW = 
s O+K 

for 11’ # n, 

P 

(23) 

where Z : (0, 1,2, . . . , k} - M is a path such that &J = n, ?k = n’. 
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Since, for any closed path c : (0, 1,2} -+ M, cc = n’, ct = n’j, c2 = n’, we get 
f, w = 0, that is, 

w(n’)(n’, n’j) + o(n’j)(n’j, n’) = 0, 

it follows that the definition of f does not depend on the path C connecting n and n’ we 
choose. The function f has the property w = d f. 

A crystal is a very complicated physical system, and the existing mathematical models 
are based on ample simplifying assumptions. When we analyse the evolution of an electron 
lying inside the crystal, we can assume that at each moment of time the electron may be 
located, with some probability, near any atom, and it moves through the crystal jumping from 
one atom to another. By using discrete time, we can consider that the classical trajectories 
of the electron correspond to the paths c : (0, 1,2,. . . , k] --+ Ml, where k E N. Thus, 
we consider that the interval of time needed for an electron to pass from an atom to a 
neighbouring atom is the same in all the cases, and it is chosen as the elementary interval 
of time. During an elementary interval of time, an electron may remain in the vicinity of 
the same atom or to pass in the vicinity of a neighbouring atom. 

In the case of a crystal placed in an uniform field, we assume that there exists a 
1 -form 

S:M+ T*M:nnH S,,, S,(n, nj) = Sj, 

such that the action along to a path c : (0, 1,2, . . . , k) -+ M to be s, S. 
Particularly, in the case when c corresponds to a formal sequence belonging to 

.R-‘{(n+, n-)}, we get 

3 s c S= (n; +Tlj)tjSj. 

c j=O 

The usual formulation of quantum mechanics in terms of path integrals [ 131 suggests us to 
consider the function 

K(n,k;O,O)= c exp k/S , 

c&(n,k) [ 1 c 
where C(n, k) is the set of all the paths (singular and non-singular) 
c:{O,1,2 ,..., k} --f bf satisfying the conditions co = 0 and ck = n. We think that 

lK(n, k; 0, ON2 

IK(n’, k; 0, @I2 

may be a candidate for the description of the ratio between the probability to find the electron 
in the vicinity of 12 at time k and the probability to find the electron in the vicinity of n’ 
at time k, when it is known that at time 0 it was in the vicinity of 0. By using the results 
presented in the previous section we get 
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K(n, k; 0,O) 

= C C 
I-ck (n+.n-)EP,,/ 

[!(:A I)! N(n+, n-)exp k k(?rJ+ + nJ)tjSj 

j=O 1 (24) 

The operators of the form 

H:F(M)--+ F(M), 

(25) 

j=O j#k 

where H, qj, Hjk E R, belonging to the algebra generated by the operators 

a/& : F(M) - F(bll) 

may be useful in crystal physics [9,10]. If 0j = oan(j), ojk = Bo,,(j)nn(k) for any A E Go. 
then the operator H is a G-invariant operator. 

Using the identification IZ = (no, n), n2, n3) = noeo + nlel + nze2 + ngej, we can find 
eigenfunctions of H of the form 

q:m/o-a=. ?h(n) = 
a exp(i(k, n)) for x(tr) = 1, 

Bexp(i(k,n)) for X(H) = -1, 
(26) 

where k E E3. and (;Y, #l E C. Indeed, the relation 

H+=h+ 

is equivalent with the system of equations 

&I + /I C Oj eXp(iKj) + cl C Ojm exp(iKj - ifh) = ka. 
j=O j#m 

(27) 

fie + (;Y CHj exp(-iKj) + p C 6j, exp(-iKj + iK,) = hp. (28) 
j=O j#m 

where Kj = (k, ej), and this system has solutions (CY, p) # (0,O) if k is a root of the 
equation 

3 
f3 + c Oj, exp(iKj - iK,) - h c 0, exp(i Kj) 

i#nl j=O 
3 

c 0j exp(-iKj) @+ CH/m exp(-iKj + iK,,) - A. 
j=O j#m 

The subspace 

= 0. 

(29) 

12(M)= ( i:;--+C~~]~(~)]2isconvergent} 
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of F(M) has a natural structure of Hilbert space given by 

ui~ f2) = c f1(n).f2(n) 

IlEM 
(30) 

and may also be useful in a quantum description of the crystal properties [9, lo]. 
Beside the fibre bundles TM and T*M considered above, other fibre bundles having as 

basis the space M may be useful in the description of the physical phenomena occurring in 
crystals [ 1 I]. 

3. Concluding remarks 

A discrete description is useful in modelling when it is based on some discrete spaces 
associated in a natural way to the physical system. Beside the universal discrete differential 
calculus [5-S], we think that it is very important to develop variants adequate to some 
particular physical systems. The crystals are among the systems where such a calculus can 
be developed in a natural way. 
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